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  395
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 linear, 282, 289, 292
 quadratic, 283, 289, 292
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Grayscale, 190
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Final grades, 105
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 world, 273
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Canonical regression analysis, 304
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 line, 100, 103, 107, 271, 274, 276, 296
 quadratic polynomial, 273, 276
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State matrix, 85, 106, 147, 331
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Welcome to Elementary Linear Algebra, Eighth Edition. I am proud to present to you this new edition. As with 
all editions, I have been able to incorporate many useful comments from you, our user. And while much has 
changed in this revision, you will still find what you expect—a pedagogically sound, mathematically precise, and 
comprehensive textbook. Additionally, I am pleased and excited to offer you something brand new— a companion 
website at LarsonLinearAlgebra.com. My goal for every edition of this textbook is to provide students with the 
tools that they need to master linear algebra. I hope you find that the changes in this edition, together with 
LarsonLinearAlgebra.com, will help accomplish just that.

New To This Edition
NEW LarsonLinearAlgebra.com
This companion website offers multiple tools and 
resources to supplement your learning. Access to 
these features is free. Watch videos explaining 
concepts from the book, explore examples, download 
data sets and much more.

REVISED Exercise Sets
The exercise sets have been carefully and extensively 
examined to ensure they are rigorous, relevant, and 
cover all the topics necessary to understand the 
fundamentals of linear algebra. The exercises are 
ordered and titled so you can see the connections 
between examples and exercises. Many new skill-
building, challenging, and application exercises have 
been added. As in earlier editions, the following 
pedagogically-proven types of exercises are included.

True or False Exercises
Proofs
Guided Proofs
Writing Exercises
Technology Exercises (indicated throughout the 
text with )

Exercises utilizing electronic data sets are indicated 
by  and found at CengageBrain.com.

 ix

Preface

 5.2 Exercises 253

True or False? In Exercises 85 and 86, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.
85. (a)  The dot product is the only inner product that can be 

defined in Rn.

 (b)  A nonzero vector in an inner product can have a 
norm of zero.

86. (a)  The norm of the vector u is the angle between u and 
the positive x-axis.

 (b)  The angle θ between a vector v and the projection 
of u onto v is obtuse when the scalar a < 0 and 
acute when a > 0, where av = projvu.

87.  Let u = (4, 2) and v = (2, −2) be vectors in R2 with 
the inner product 〈u, v〉 = u1v1 + 2u2v2.

 (a) Show that u and v are orthogonal.

 (b)  Sketch u and v. Are they orthogonal in the Euclidean 
sense?

88. Proof Prove that

 ʈu + vʈ2 + ʈu − vʈ2 = 2ʈuʈ2 + 2ʈvʈ2

 for any vectors u and v in an inner product space V.

89. Proof Prove that the function is an inner product on Rn.

 〈u, v〉 = c1u1v1 + c2u2v2 + .  .  . + cnunvn, ci > 0

90.  Proof Let u and v be nonzero vectors in an inner 
product space V. Prove that u − projvu is orthogonal  
to v.

91.  Proof Prove Property 2 of Theorem 5.7: If u, v, 
and w are vectors in an inner product space V, then 
〈u + v, w〉 = 〈u, w〉 + 〈v, w〉.

92.  Proof Prove Property 3 of Theorem 5.7: If u and v 
are vectors in an inner product space V and c is any real 
number, then 〈u, cv〉 = c〈u, v〉.

93.  Guided Proof Let W  be a subspace of the inner  
product space V. Prove that the set

 W⊥ = {v ∈ V: 〈v, w〉 = 0 for all w ∈ W}
 is a subspace of V.

  Getting Started: To prove that W⊥ is a subspace of 
V, you must show that W⊥ is nonempty and that the  
closure conditions for a subspace hold (Theorem 4.5).

   (i) Find a vector in W⊥ to conclude that it is nonempty.

  (ii)  To show the closure of W⊥ under addition, you 
need to show that 〈v1 + v2, w〉 = 0 for all w ∈ W  
and for any v1, v2 ∈ W⊥. Use the properties of 
inner products and the fact that 〈v1, w〉 and 〈v2, w〉 
are both zero to show this.

 (iii)  To show closure under multiplication by a scalar, 
proceed as in part (ii). Use the properties of inner 
products and the condition of belonging to W⊥.

 94.  Use the result of Exercise 93 to find W⊥ when W  is the 
span of (1, 2, 3) in V = R3.

 95.  Guided Proof Let 〈u, v〉 be the Euclidean inner 
product on Rn. Use the fact that 〈u, v〉 = uTv to prove 
that for any n × n matrix A,

  (a) 〈ATAu, v〉 = 〈u, Av〉
  and

  (b) 〈ATAu, u〉 = ʈAuʈ2.

   Getting Started: To prove (a) and (b), make use of both 
the properties of transposes (Theorem 2.6) and the 
properties of the dot product (Theorem 5.3).

   (i)  To prove part (a), make repeated use of the property  
〈u, v〉 = uTv and Property 4 of Theorem 2.6.

  (ii)  To prove part (b), make use of the property 
〈u, v〉 = uTv, Property 4 of Theorem 2.6, and 
Property 4 of Theorem 5.3.

96. CAPSTONE
(a)  Explain how to determine whether a function 

defines an inner product.

(b)  Let u and v be vectors in an inner product space V, 
such that v ≠ 0. Explain how to find the orthogonal  
projection of u onto v.

Finding Inner Product Weights In Exercises 97–100, 
find c1 and c2 for the inner product of R2,
〈u, v〉 = c1u1v1 + c2u2v2

such that the graph represents a unit circle as shown.
 97. y
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6

101. Consider the vectors

  u = (6, 2, 4) and v = (1, 2, 0)
   from Example 10. Without using Theorem 5.9, show 

that among all the scalar multiples cv of the vector 
v, the projection of u onto v is the vector closest to  
u—that is, show that d(u, projvu) is a minimum.
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Table of Contents Changes
Based on market research and feedback from users, 
Section 2.5 in the previous edition (Applications of 
Matrix Operations) has been expanded from one section 
to two sections to include content on Markov chains. 
So now, Chapter 2 has two application sections: 
Section 2.5 (Markov Chains) and Section 2.6 (More 
Applications of Matrix Operations). In addition, 
Section 7.4 (Applications of Eigenvalues and 
Eigenvectors) has been expanded to include content 
on constrained optimization.

Trusted Features
®

For the past several years, an independent website—
CalcChat.com—has provided free solutions to all 
odd-numbered problems in the text. Thousands of 
students have visited the site for practice and help 
with their homework from live tutors. You can also 
use your smartphone’s QR Code® reader to scan the
icon  at the beginning of each exercise set to
access the solutions.

Chapter Openers
Each Chapter Opener highlights five real-life 
applications of linear algebra found throughout the 
chapter. Many of the applications reference the 
Linear Algebra Applied feature (discussed on the 
next page). You can find a full list of the 
applications in the Index of Applications on the 
inside front cover.

Section Objectives
A bulleted list of learning objectives, located at 
the beginning of each section, provides you the 
opportunity to preview what will be presented 
in the upcoming section.

Theorems, Definitions, and 
Properties
Presented in clear and mathematically precise 
language, all theorems, definitions, and properties 
are highlighted for emphasis and easy reference.

Proofs in Outline Form
In addition to proofs in the exercises, some 
proofs are presented in outline form. This omits 
the need for burdensome calculations.

x Preface

62 Chapter 2 Matrices

2.3 The Inverse of a Matrix

 Find the inverse of a matrix (if it exists).

 Use properties of inverse matrices.

 Use an inverse matrix to solve a system of linear equations.

MATRICES AND THEIR INVERSES
Section 2.2 discussed some of the similarities between the algebra of real numbers and 
the algebra of matrices. This section further develops the algebra of matrices to include 
the solutions of matrix equations involving matrix multiplication. To begin, consider 
the real number equation ax = b. To solve this equation for x, multiply both sides of 
the equation by a−1 (provided a ≠ 0).

 ax = b
 (a−1a)x = a−1b

 (1)x = a−1b
 x = a−1b

The number a−1 is the multiplicative inverse of a because a−1a = 1 (the identity 
element for multiplication). The definition of the multiplicative inverse of a matrix is 
similar.

Definition of the Inverse of a Matrix

An n × n matrix A is invertible (or nonsingular) when there exists an n × n 
matrix B such that

AB = BA = In

where In is the identity matrix of order n. The matrix B is the (multiplicative)  
inverse of A. A matrix that does not have an inverse is noninvertible (or  
singular).

Nonsquare matrices do not have inverses. To see this, note that if A is of size 
m × n and B is of size n × m (where m ≠ n), then the products AB and BA are of  
different sizes and cannot be equal to each other. Not all square matrices have inverses. 
(See Example 4.) The next theorem, however, states that if a matrix does have an 
inverse, then that inverse is unique.

THEOREM 2.7 Uniqueness of an Inverse Matrix

If A is an invertible matrix, then its inverse is unique. The inverse of A is  
denoted by A−1.

PROOF
If A is invertible, then it has at least one inverse B such that

AB = I = BA.

Assume that A has another inverse C such that

AC = I = CA.

Demonstrate that B and C are equal, as shown on the next page.
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Discovery
Using the Discovery feature helps you develop 
an intuitive understanding of mathematical 
concepts and relationships.

Technology Notes
Technology notes show how you can use 
graphing utilities and software programs 
appropriately in the problem-solving process. 
Many of the Technology notes reference the 
Technology Guide at CengageBrain.com.

Linear Algebra Applied
The Linear Algebra Applied feature describes a real-life 
application of concepts discussed in a section. These 
applications include biology and life sciences, business 
and economics, engineering and technology, physical 
sciences, and statistics and probability.

Capstone Exercises
The Capstone is a conceptual problem that synthesizes 
key topics to check students’ understanding of the 
section concepts. I recommend it.

Chapter Projects
Two per chapter, these offer the opportunity for group 
activities or more extensive homework assignments, 
and are focused on theoretical concepts or applications. 
Many encourage the use of technology.

Preface xi 3.1 The Determinant of a Matrix 113

When expanding by cofactors, you do not need to find cofactors of zero entries, 
because zero times its cofactor is zero.

 aijCij = (0)Cij

 = 0

The row (or column) containing the most zeros is usually the best choice for expansion 
by cofactors. The next example demonstrates this.

 The Determinant of a Matrix of Order 4

Find the determinant of

A = [
1

−1
0
3

−2
1
2
4

3
0
0
0

0
2
3

−2
].

SOLUTION
Notice that three of the entries in the third column are zeros. So, to eliminate some of 
the work in the expansion, use the third column.

∣A∣ = 3(C13) + 0(C23) + 0(C33) + 0(C43)

The cofactors C23, C33, and C43 have zero coefficients, so you need only find the  
cofactor C13. To do this, delete the first row and third column of A and evaluate the 
determinant of the resulting matrix.

 C13 = (−1)1+3∣−1
0
3

1
2
4

2
3

−2∣ Delete 1st row and 3rd column.

 = ∣−1
0
3

1
2
4

2
3

−2∣ Simplify.

Expanding by cofactors in the second row yields

 C13 = (0)(−1)2+1∣14 2
−2∣ + (2)(−1)2+2∣−1

3
2

−2∣ + (3)(−1)2+3∣−1
3

1
4∣

 = 0 + 2(1)(−4) + 3(−1)(−7)
 = 13.

You obtain 

 ∣A∣ = 3(13)
 = 39. 

THEOREM 3.1 Expansion by Cofactors

Let A be a square matrix of order n. Then the determinant of A is

det(A) = ∣A∣ = ∑
n

j=1
aijCij = ai1Ci1 + ai2Ci2 + .  .  . + ainCin

or

det(A) = ∣A∣ = ∑
n

i=1
aijCij = a1jC1j + a2jC2j + .  .  . + anjCnj.

ith row  
expansion

jth column  
expansion

TECHNOLOGY
Many graphing utilities and 
software programs can  
find the determinant of  
a square matrix. If you use  
a graphing utility, then you may 
see something similar to the 
screen below for Example 4. 
The Technology Guide at 
CengageBrain.com can help 
you use technology to find a 
determinant.

39

[[1  -2 3 0 ]
[-1 1  0 2 ]

A

det A

[0  2  0 3 ]
[3  4  0  -2]]
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108 Chapter 2 Matrices

2 Projects

1 Exploring Matrix Multiplication
The table shows the first two test scores for Anna, Bruce, Chris, and David. Use the 
table to create a matrix M to represent the data. Input M into a software program or 
a graphing utility and use it to answer the questions below.

1. Which test was more difficult? Which was easier? Explain.

2. How would you rank the performances of the four students?

3. Describe the meanings of the matrix products M[1
0] and M[0

1].

4. Describe the meanings of the matrix products [1 0 0 0]M and [0 0 1 0]M.

5. Describe the meanings of the matrix products M[1
1] and 12M[1

1].

6. Describe the meanings of the matrix products [1 1 1 1]M and 14[1 1 1 1]M.

7. Describe the meaning of the matrix product [1 1 1 1]M[1
1].

8.  Use matrix multiplication to find the combined overall average score on  
both tests.

9.  How could you use matrix multiplication to scale the scores on test 1 by a  
factor of 1.1?

2 Nilpotent Matrices
Let A be a nonzero square matrix. Is it possible that a positive integer k exists such 
that Ak = O? For example, find A3 for the matrix

 A = [0
0
0

1
0
0

2
1
0].

A square matrix A is nilpotent of index k when A ≠ O, A2 ≠ O, .  .  . , Ak−1 ≠ O, 
but Ak = O. In this project you will explore nilpotent matrices.

1. The matrix in the example above is nilpotent. What is its index?

2.  Use a software program or a graphing utility to determine which matrices below 
are nilpotent and find their indices.

 (a) [0
0

1
0]  (b) [0

1
1
0]  (c) [0

1
0
0]

 (d) [1
1

0
0]  (e) [0

0
0

0
0
0

1
0
0] (f) [0

1
1

0
0
1

0
0
0]

3. Find 3 × 3 nilpotent matrices of indices 2 and 3.

4. Find 4 × 4 nilpotent matrices of indices 2, 3, and 4.

5. Find a nilpotent matrix of index 5.

6. Are nilpotent matrices invertible? Prove your answer.

7. When A is nilpotent, what can you say about AT? Prove your answer.

8. Show that if A is nilpotent, then I − A is invertible.

Test 1 Test 2

Anna 84 96

Bruce 56 72

Chris 78 83

David 82 91

Supri Suharjoto/Shutterstock.com
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Notice that three of the entries in the third column are zeros. So, to eliminate some of 
the work in the expansion, use the third column.

3

 have zero coefficients, so you need only find the 
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[
1
0
⋮
0

0
1
⋮
0

.  .  .

.  .  .

.  .  .

0
0
⋮
1

c11

c21

⋮
cn1

c12

c22

⋮
cn2

.  .  .

.  .  .

.  .  .

c1n

c2n

⋮
cnn

].

By the lemma following Theorem 4.20, however, the right-hand side of this matrix  
is Q = P−1, which implies that the matrix has the form [I    P−1], which proves the 
theorem. 

In the next example, you will apply this procedure to the change of basis problem 
from Example 3.

 
Finding a Transition Matrix

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Find the transition matrix from B to B′ for the bases for R3 below.

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and B′ = {(1, 0, 1), (0, −1, 2), (2, 3, −5)}

SOLUTION
First use the vectors in the two bases to form the matrices B and B′.

B = [1
0
0

0
1
0

0
0
1] and B′ = [1

0
1

0
−1

2

2
3

−5]
Then form the matrix [B′    B] and use Gauss-Jordan elimination to rewrite [B′    B] as 
[I3    P−1].

[1
0
1

0
−1

2

2
3

−5

1
0
0

0
1
0

0
0
1]  [1

0
0

0
1
0

0
0
1

−1
3
1

4
−7
−2

2
−3
−1]

From this, you can conclude that the transition matrix from B to B′ is

P−1 = [−1
3
1

4
−7
−2

2
−3
−1].

Multiply P−1 by the coordinate matrix of x = [1    2    −1]T to see that the result is the 
same as that obtained in Example 3. 

LINEAR 
ALGEBRA 
APPLIED

Crystallography is the science of atomic and molecular 
structure. In a crystal, atoms are in a repeating pattern 
called a lattice. The simplest repeating unit in a lattice is a 
unit cell. Crystallographers can use bases and coordinate 
matrices in R3 to designate the locations of atoms in a  
unit cell. For example, the figure below shows the unit  
cell known as end-centered monoclinic.

One possible coordinate matrix for the top end-centered 
(blue) atom is [x]B′ = [1

2    12    1]T.
Brazhnykov Andriy/Shutterstock.com

DISCOVERY

1.  Let B = {(1, 0), (1, 2)} 
and B′ = {(1, 0), (0, 1)}. 
Form the matrix 
[B′    B].

2.  Make a conjecture 
about the necessity of 
using Gauss-Jordan 
elimination to obtain 
the transition matrix 
P−1 when the change 
of basis is from a  
nonstandard basis to  
a standard basis.
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Example 1 describes another nonstandard orthonormal basis for R3.

  A Nonstandard Orthonormal Basis for R3

Show that the set is an orthonormal basis for R3.

S = {v1, v2, v3} = {( 1
√2

, 
1
√2

, 0), (−√2
6

, 
√2
6

, 
2√2

3 ), (2
3

, −2
3

, 
1
3)}

SOLUTION
First show that the three vectors are mutually orthogonal.

 v1 ∙ v2 = −1
6

+ 1
6

+ 0 = 0

 v1 ∙ v3 = 2
3√2

− 2
3√2

+ 0 = 0

 v2 ∙ v3 = −√2
9

− √2
9

+ 2√2
9

= 0

Now, each vector is of length 1 because

ʈv1ʈ = √v1 ∙ v1 = √1
2 + 1

2 + 0 = 1

ʈv2ʈ = √v2 ∙ v2 = √ 1
18 + 1

18 + 8
9 = 1

ʈv3ʈ = √v3 ∙ v3 = √4
9 + 4

9 + 1
9 = 1.

So, S is an orthonormal set. The three vectors do not lie in the same plane (see Figure 
5.11), so you know that they span R3. By Theorem 4.12, they form a (nonstandard)  
orthonormal basis for R3. 

  An Orthonormal Basis for P3

In P3, with the inner product

〈 p, q〉 = a0b0 + a1b1 + a2b2 + a3b3

the standard basis B = {1, x, x2, x3} is orthonormal. The verification of this is left as an  
exercise. (See Exercise 17.) 

Figure 5.11

k

j
i

x y
,

, ,−, − ,

, 01

3

1
2

2   2

2(

((

)

))

z

2 22
3

2
3

1
3

v1

v2
v3

6 6

LINEAR 
ALGEBRA 
APPLIED

Time-frequency analysis of irregular physiological signals, 
such as beat-to-beat cardiac rhythm variations (also known 
as heart rate variability or HRV), can be difficult. This is 
because the structure of a signal can include multiple  
periodic, nonperiodic, and pseudo-periodic components. 
Researchers have proposed and validated a simplified HRV 
analysis method called orthonormal-basis partitioning and 
time-frequency representation (OPTR). This method can 
detect both abrupt and slow changes in the HRV signal’s 
structure, divide a nonstationary HRV signal into segments 
that are “less nonstationary,” and determine patterns in the  
HRV. The researchers found that although it had poor time  
resolution with signals that changed gradually, the OPTR 
method accurately represented multicomponent and abrupt  
changes in both real-life and simulated HRV signals. 
(Source: Orthonormal-Basis Partitioning and Time-Frequency 
Representation of Cardiac Rhythm Dynamics, Aysin, Benhur, et al, 
IEEE Transactions on Biomedical Engineering, 52, no. 5)

Sebastian Kaulitzki/Shutterstock.com
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Media
Instructor’s Solutions Manual
The Instructor’s Solutions Manual provides worked-out solutions for all even-numbered 
exercises in the text.

Cengage Learning Testing Powered by Cognero (ISBN: 978-1-305-65806-6)
is a flexible, online system that allows you to author, edit, and manage test bank  
content, create multiple test versions in an instant, and deliver tests from your LMS, 
your classroom, or wherever you want. This is available online at cengage.com/login.

Turn the Light On with MindTap for Larson’s Elementary Linear Algebra
Through personalized paths of dynamic assignments and applications, MindTap is a 
digital learning solution and representation of your course that turns cookie cutter into 
cutting edge, apathy into engagement, and memorizers into higher-level thinkers.

The Right Content: With MindTap’s carefully curated material, you get the 
precise content and groundbreaking tools you need for every course you teach.

Personalization: Customize every element of your course—from rearranging 
the Learning Path to inserting videos and activities.

Improved Workflow: Save time when planning lessons with all of the trusted, 
most current content you need in one place in MindTap.

Tracking Students’ Progress in Real Time: Promote positive outcomes by 
tracking students in real time and tailoring your course as needed based on  
the analytics.

Learn more at cengage.com/mindtap.
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Print
Student Solutions Manual
ISBN-13: 978-1-305-87658-3
The Student Solutions Manual provides complete worked-out solutions to all  
odd-numbered exercises in the text. Also included are the solutions to all  
Cumulative Test problems. 

Media
MindTap for Larson’s Elementary Linear Algebra
MindTap is a digital representation of your course that provides you with the tools 
you need to better manage your limited time, stay organized and be successful.  
You can complete assignments whenever and wherever you are ready to learn with 
course material specially customized for you by your instructor and streamlined in 
one proven, easy-to-use interface. With an array of study tools, you’ll get a true  
understanding of course concepts, achieve better grades and set the groundwork 
for your future courses.

Learn more at cengage.com/mindtap.

CengageBrain.com
To access additional course materials and companion resources, please visit 
CengageBrain.com. At the CengageBrain.com home page, search for the ISBN  
of your title (from the back cover of your book) using the search box at the top of  
the page. This will take you to the product page where free companion resources  
can be found.

 xiii
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1

 1.1 Introduction to Systems of Linear Equations
 1.2 Gaussian Elimination and Gauss-Jordan Elimination
 1.3 Applications of Systems of Linear Equations

 1 Systems of Linear 
Equations

Balancing Chemical Equations (p. 4)

Global Positioning System (p. 16)

Traffic Flow (p. 28)

Electrical Network Analysis (p. 30)

Airspeed of a Plane (p. 11)
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2 Chapter 1 Systems of Linear Equations

1.1 Introduction to Systems of Linear Equations

 Recognize a linear equation in n variables.

 Find a parametric representation of a solution set.

  Determine whether a system of linear equations is consistent or 
inconsistent.

  Use back-substitution and Gaussian elimination to solve a system 
of linear equations.

LINEAR EQUATIONS IN n VARIABLES
The study of linear algebra demands familiarity with algebra, analytic geometry,  
and trigonometry. Occasionally, you will find examples and exercises requiring a 
knowledge of calculus, and these are marked in the text.

Early in your study of linear algebra, you will discover that many of the solution  
methods involve multiple arithmetic steps, so it is essential that you check your work. Use  
software or a calculator to check your work and perform routine computations.

Although you will be familiar with some material in this chapter, you should  
carefully study the methods presented. This will cultivate and clarify your intuition for 
the more abstract material that follows.

Recall from analytic geometry that the equation of a line in two-dimensional space 
has the form

a1x + a2y = b,   a1, a2, and b are constants.

This is a linear equation in two variables x and y. Similarly, the equation of a plane 
in three-dimensional space has the form

a1x + a2y + a3z = b,   a1, a2, a3, and b are constants.

This is a linear equation in three variables x, y, and z. A linear equation in n variables 
is defined below.

Linear equations have no products or roots of variables and no variables involved  
in trigonometric, exponential, or logarithmic functions. Variables appear only to the 
first power.

 Linear and Nonlinear Equations

Each equation is linear.

a. 3x + 2y = 7 b. 1
2x + y − πz = √2 c. (sin π)x1 − 4x2 = e2

Each equation is not linear.

a. xy + z = 2 b. ex − 2y = 4 c. sin x1 + 2x2 − 3x3 = 0 

Definition of a Linear Equation in n Variables

A linear equation in n variables x1, x2, x3, .  .  . , xn has the form

a1x1 + a2x2 + a3x3 + .  .  . + anxn = b.

The coefficients a1, a2, a3, .  .  . , an are real numbers, and the constant term b  
is a real number. The number a1 is the leading coefficient, and x1 is the  
leading variable.
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 1.1 Introduction to Systems of Linear Equations 3

SOLUTIONS AND SOLUTION SETS
A solution of a linear equation in n variables is a sequence of n real numbers s1, s2, 
s3, .  .  . , sn that satisfy the equation when you substitute the values

x1 = s1,  x2 = s2,  x3 = s3,  .  .  . ,  xn = sn

into the equation. For example, x1 = 2 and x2 = 1 satisfy the equation x1 + 2x2 = 4. 
Some other solutions are x1 = −4 and x2 = 4, x1 = 0 and x2 = 2, and x1 = −2 and 
x2 = 3.

The set of all solutions of a linear equation is its solution set, and when you have 
found this set, you have solved the equation. To describe the entire solution set of a 
linear equation, use a parametric representation, as illustrated in Examples 2 and 3.

 Parametric Representation of a Solution Set

Solve the linear equation x1 + 2x2 = 4.

SOLUTION
To find the solution set of an equation involving two variables, solve for one of the  
variables in terms of the other variable. Solving for x1 in terms of x2, you obtain

x1 = 4 − 2x2.

In this form, the variable x2 is free, which means that it can take on any real value. The 
variable x1 is not free because its value depends on the value assigned to x2. To represent 
the infinitely many solutions of this equation, it is convenient to introduce a third variable 
t called a parameter. By letting x2 = t, you can represent the solution set as

x1 = 4 − 2t,  x2 = t,  t is any real number.

To obtain particular solutions, assign values to the parameter t. For instance, t = 1 
yields the solution x1 = 2 and x2 = 1, and t = 4 yields the solution x1 = −4  
and x2 = 4. 

To parametrically represent the solution set of the linear equation in Example 2  
another way, you could have chosen x1 to be the free variable. The parametric  
representation of the solution set would then have taken the form

x1 = s,  x2 = 2 − 1
2s,  s is any real number.

For convenience, when an equation has more than one free variable, choose the  
variables that occur last in the equation to be the free variables.

 Parametric Representation of a Solution Set

Solve the linear equation 3x + 2y − z = 3.

SOLUTION
Choosing y and z to be the free variables, solve for x to obtain 

 3x = 3 − 2y +  z

 x = 1 − 2
3y +  13z.

Letting y = s and z = t, you obtain the parametric representation

x = 1 − 2
3s + 1

3t,  y = s,  z = t

where s and t are any real numbers. Two particular solutions are 

x = 1, y = 0, z = 0  and  x = 1, y = 1, z = 2. 
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4 Chapter 1 Systems of Linear Equations

SYSTEMS OF LINEAR EQUATIONS
A system of m linear equations in n variables is a set of m equations, each of which 
is linear in the same n variables:

 a11x1 +  a12x2 +  a13x3 +  
.  .  . + a1nxn = b1

 a21x1 +  a22x2 +  a23x3 +  
.  .  . + a2nxn = b2

 a31x1 +  a32x2 +  a33x3 +  
.  .  . + a3nxn = b3

 ⋮
 am1x1 +  am2x2 +  am3x3 +  

.  .  . + amnxn = bm.

A system of linear equations is also called a linear system. A solution of a linear 
system is a sequence of numbers s1, s2, s3, .  .  . , sn that is a solution of each equation 
in the system. For example, the system

3x1 +
−x1 +

2x2 = 3
x2 = 4

has x1 = −1 and x2 = 3 as a solution because x1 = −1 and x2 = 3 satisfy both
equations. On the other hand, x1 = 1 and x2 = 0 is not a solution of the system because 
these values satisfy only the first equation in the system.

Elnur/Shutterstock.com

LINEAR
ALGEBRA
APPLIED

In a chemical reaction, atoms reorganize in one or more 
substances. For example, when methane gas (CH4 ) 
combines with oxygen (O2) and burns, carbon dioxide 
(CO2 ) and water (H2O) form. Chemists represent this 
process by a chemical equation of the form

(x1)CH4 + (x2)O2 → (x3)CO2 + (x4)H2O.

A chemical reaction can neither create nor destroy atoms. 
So, all of the atoms represented on the left side of the 
arrow must also be on the right side of the arrow. This 
is called balancing the chemical equation. In the above 
example, chemists can use a system of linear equations 
to find values of x1, x2, x3, and x4 that will balance the 
chemical equation. 

DISCOVERY

1. Graph the two lines

 
3x − y = 1
2x − y = 0

  in the xy-plane. Where do they intersect? How many solutions does 
this system of linear equations have?

2. Repeat this analysis for the pairs of lines

 
3x − y = 1
3x − y = 0

  and  
3x −
6x −

y = 1
2y = 2.

3.  What basic types of solution sets are possible for a system of two 
linear equations in two variables?

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

REMARK
The double-subscript notation 
indicates aij is the coefficient 
of xj in the ith equation.
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 1.1 Introduction to Systems of Linear Equations 5

It is possible for a system of linear equations to have exactly one solution,  
infinitely many solutions, or no solution. A system of linear equations is consistent 
when it has at least one solution and inconsistent when it has no solution.

 Systems of Two Equations in Two Variables

Solve and graph each system of linear equations.

a. x + y =
x − y =

3
−1

 
b. x +

2x +
y = 3

2y = 6
 

c. x + y = 3
x + y = 1

SOLUTION

a.  This system has exactly one solution, x = 1 and y = 2. One way to obtain  
the solution is to add the two equations to give 2x = 2, which implies x = 1  
and so y = 2. The graph of this system is two intersecting lines, as shown in  
Figure 1.1(a).

b.  This system has infinitely many solutions because the second equation is the result 
of multiplying both sides of the first equation by 2. A parametric representation of 
the solution set is 

x = 3 − t,  y = t,  t is any real number.

The graph of this system is two coincident lines, as shown in Figure 1.1(b).

c.  This system has no solution because the sum of two numbers cannot be 3 and 1 
simultaneously. The graph of this system is two parallel lines, as shown in  
Figure 1.1(c).

1

2

3

4

1 2 3
x

y

−1

  

1

2

3

1 2 3
x

y   

1

2

3

1 2 3
x

y

−1
−1

a. Two intersecting lines: b. Two coincident lines: c. Two parallel lines:
x + y =
x − y =

3
−1

 
x +

2x +
y = 3

2y = 6
 

x + y = 3
x + y = 1

Figure 1.1 

Example 4 illustrates the three basic types of solution sets that are possible for a  
system of linear equations. This result is stated here without proof. (The proof is  
provided later in Theorem 2.5.)

Number of Solutions of a System of Linear Equations

For a system of linear equations, precisely one of the statements below is true.

1. The system has exactly one solution (consistent system).
2. The system has infinitely many solutions (consistent system).
3. The system has no solution (inconsistent system).
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6 Chapter 1 Systems of Linear Equations

SOLVING A SYSTEM OF LINEAR EQUATIONS
Which system is easier to solve algebraically?

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

 
x − 2y + 3z = 9

y + 3z = 5
z = 2

The system on the right is clearly easier to solve. This system is in row-echelon form, 
which means that it has a “stair-step” pattern with leading coefficients of 1. To solve 
such a system, use back-substitution.

 Using Back-Substitution in Row-Echelon Form

Use back-substitution to solve the system.

 x − 2y =  5 Equation 1
 y =  −2 Equation 2

SOLUTION
From Equation 2, you know that y = −2. By substituting this value of y into Equation 1, 
you obtain

 x − 2(−2) = 5  Substitute −2 for y.
 x = 1. Solve for x.

The system has exactly one solution: x = 1 and y = −2. 

The term back-substitution implies that you work backwards. For instance,  
in Example 5, the second equation gives you the value of y. Then you substitute  
that value into the first equation to solve for x. Example 6 further demonstrates this  
procedure.

 Using Back-Substitution in Row-Echelon Form

Solve the system.

 x − 2y + 3z = 9 Equation 1
 y + 3z = 5 Equation 2

 z = 2 Equation 3

SOLUTION
 From Equation 3, you know the value of z. To solve for y, substitute z = 2 into  
Equation 2 to obtain

 y + 3(2) =  5  Substitute 2 for z.
 y =  −1. Solve for y.

Then, substitute y = −1 and z = 2 in Equation 1 to obtain

 x − 2(−1) + 3(2) = 9  Substitute −1 for y and 2 for z.
 x = 1. Solve for x.

The solution is x = 1, y = −1, and z = 2. 

Two systems of linear equations are equivalent when they have the same solution 
set. To solve a system that is not in row-echelon form, first rewrite it as an equivalent  
system that is in row-echelon form using the operations listed on the next page.
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1.1 Introduction to Systems of Linear Equations 7

Rewriting a system of linear equations in row-echelon form usually involves 
a chain of equivalent systems, using one of the three basic operations to obtain 
each system. This process is called Gaussian elimination, after the German 
mathematician Carl Friedrich Gauss (1777–1855). 

  Using Elimination to Rewrite 
a System in Row-Echelon Form

See LarsonLinearAlgebra.com for an interactive version of this type of example.

Solve the system.

x − 2y
−x + 3y
2x − 5y

+ 3z =
=

+ 5z =

9
−4
17

SOLUTION
Although there are several ways to begin, you want to use a systematic procedure 
that can be applied to larger systems. Work from the upper left corner of the 
system, saving the x at the upper left and eliminating the other x-terms from the 
first column.

x − 2y + 3z =
y + 3z =

2x − 5y + 5z =

9
5

17
 

Adding the first equation to 
the second equation produces 
a new second equation.

x − 2y +
y +

−y −

3z =
3z =
z =

9
5

−1
 

Adding −2 times the first
equation to the third equation
produces a new third equation.

Now that you have eliminated all but the first x from the first column, work on the 
second column.

x − 2y + 3z = 9
y + 3z = 5

2z = 4
 

Adding the second equation to
the third equation produces
a new third equation.

x − 2y + 3z = 9
y + 3z = 5

z = 2
 

Multiplying the third equation
by 12 produces a new third
equation.

This is the same system you solved in Example 6, and, as in that example, the solution is

x = 1,  y = −1,  z = 2. 

Each of the three equations in Example 7 represents a plane in a three-dimensional 
coordinate system. The unique solution of the system is the point (x, y, z) = (1, −1, 2),
so the three planes intersect at this point, as shown in Figure 1.2.

Operations That Produce Equivalent Systems

Each of these operations on a system of linear equations produces an equivalent 
system.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

Figure 1.2

x

y

z

(1, −1, 2)

−x + 3y = −4

2x −  5y + 5z = 17

x −  2y +3z = 9

Carl Friedrich Gauss
(1777–1855)

German mathematician 
Carl Friedrich Gauss is 
recognized, with Newton 
and Archimedes, as one 
of the three greatest 
mathematicians in history. 
Gauss used a form of what 
is now known as Gaussian 
elimination in his research. 
Although this method was 
named in his honor, the 
Chinese used an 
almost identical 
method some 
2000 years prior 
to Gauss.

Nicku/Shutterstock.com
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8 Chapter 1 Systems of Linear Equations

Many steps are often required to solve a system of linear equations, so it is 
very easy to make arithmetic errors. You should develop the habit of checking your  
solution by substituting it into each equation in the original system. For instance,  
in Example 7, check the solution x = 1, y = −1, and z = 2 as shown below.

Equation 1:  
Equation 2:  
Equation 3:  

(1) − 2(−1)
−(1) + 3(−1)
2(1) − 5(−1)

+ 3(2) =
=

+ 5(2) =

9
−4
17

 
Substitute the solution  
into each equation of the 
original system.

The next example involves an inconsistent system—one that has no solution.  
The key to recognizing an inconsistent system is that at some stage of the Gaussian 
elimination process, you obtain a false statement such as 0 = −2.

 An Inconsistent System

Solve the system.

x1 −
2x1 −
x1 +

3x2 +
x2 −

2x2 −

x3 =
2x3 =
3x3 =

1
2

−1

SOLUTION

x1 − 3x2 +
5x2 −

x1 + 2x2 −

x3 =
4x3 =
3x3 =

1
0

−1
   

Adding −2 times the first 
equation to the second equation 
produces a new second equation.

x1 − 3x2 +
5x2 −
5x2 −

x3 =
4x3 =
4x3 =

1
0

−2
   

Adding −1 times the first 
equation to the third equation 
produces a new third equation.

(Another way of describing this operation is to say that you subtracted the first  
equation from the third equation to produce a new third equation.) 

x1 − 3x2 +
5x2 −

x3 =
4x3 =

0 =

1
0

−2
   

Subtracting the second equation 
from the third equation produces 
a new third equation.

The statement 0 = −2 is false, so this system has no solution. Moreover, this system 
is equivalent to the original system, so the original system also has no solution. 

As in Example 7, the three equations in 
Example 8 represent planes in a three-dimensional 
coordinate system. In this example, however, the 
system is inconsistent. So, the planes do not have a 
point in common, as shown at the right.

x2x1

x3

2x1 −  x2 −  2x3 = 2

x1 + 2x2 −  3x3 = −1

x1 −  3x2 + x3 = 1
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1.1 Introduction to Systems of Linear Equations 9

This section ends with an example of a system of linear equations that has infinitely 
many solutions. You can represent the solution set for such a system in parametric 
form, as you did in Examples 2 and 3.

 A System with Infinitely Many Solutions

Solve the system.

x1

−x1

x2

+ 3x2

−
−

x3 =
3x3 =

=

0
−1

1

SOLUTION
Begin by rewriting the system in row-echelon form, as shown below.

x1

−x1

x2

+ 3x2

−
−

3x3 =
x3 =

=

−1
0
1
 

Interchange the first 
two equations.

x1 −
x2 −

      3x2 −

3x3 =
x3 =

3x3 =

−1
0
0
 

Adding the first equation to the 
third equation produces a new 
third equation.

x1 −
        x2 −

3x3 =
x3 =
0 =

−1
0
0
 

Adding −3 times the second 
equation to the third equation 
eliminates the third equation.

The third equation is unnecessary, so omit it to obtain the system shown below.

x1 −
     x2 −

3x3 =
x3 =

−1
0

To represent the solutions, choose x3 to be the free variable and represent it by the 
parameter t. Because x2 = x3 and x1 = 3x3 − 1, you can describe the solution set as

x1 = 3t − 1,  x2 = t,  x3 = t,  t is any real number. 

DISCOVERY

 1. Graph the two lines represented by the system of equations.

 
x − 2y =

−2x + 3y =
1

−3

2. Use Gaussian elimination to solve this system as shown below.

 
x − 2y =

−1y =
1

−1

 
x − 2y = 1

y = 1

 
x = 3
y = 1

  Graph the system of equations you obtain at each step of this 
process. What do you observe about the lines?

See LarsonLinearAlgebra.com for an interactive version of this type of exercise.

REMARK
You are asked to repeat this 
graphical analysis for other 
systems in Exercises 91 
and 92.
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10 Chapter 1 Systems of Linear Equations

1.1 Exercises    See CalcChat.com for worked-out solutions to odd-numbered exercises.

Linear Equations In Exercises 1–6, determine whether 
the equation is linear in the variables x and y.
 1. 2x − 3y = 4  2. 3x − 4xy = 0

 3. 
3
y

+ 2
x

− 1 = 0  4. x2 + y2 = 4

 5. 2 sin x − y = 14  6. (cos 3)x + y = −16

Parametric Representation In Exercises 7–10, find  
a parametric representation of the solution set of the  
linear equation.
 7. 2x − 4y = 0  8. 3x − 1

2y = 9

 9. x + y + z = 1

10. 12x1 + 24x2 − 36x3 = 12

Graphical Analysis In Exercises 11–24, graph the  
system of linear equations. Solve the system and  
interpret your answer.
11.

 
2x + y = 4
x − y = 2

 
12.

 
x + 3y = 2

−x + 2y = 3

13.
 
−x +
3x −

y = 1
3y = 4

 
14.

 
1
2x − 1

3y =
−2x + 4

3y =
1

−4
15.

 
3x −
2x +

5y = 7
y = 9

 
16.

 
−x + 3y =
4x + 3y =

17
7

17.
 
2x − y =
5x − y =

5
11

 
18.

 
x − 5y = 21

6x + 5y = 21

19.
 

x + 3
4

+ y − 1
3

=

2x − y =

1

12
 

20.
 

x − 1
2

+ y + 2
3

= 4

x − 2y = 5

21.
 
0.05x − 0.03y = 0.07
0.07x + 0.02y = 0.16

 
22.

 
0.2x − 0.5y =
0.3x − 0.4y =

−27.8
68.7

23.
 

x
4

+ y
6

= 1

x − y = 3
 

24.
 

2x
3

+

4x +

y
6

=

y =

2
3
4

Back-Substitution In Exercises 25–30, use back- 
substitution to solve the system.
25.

 
x1 − x2 = 2

x2 = 3
 

26.
 
2x1 − 4x2 = 6

3x2 = 9

27.
 
−x + y −

2y +
z =
z =

1
2z =

0
3
0
 

28.
 

x − y
3y +

=
z =

4z =

5
11
8

29.
 
5x1 +
2x1 +

2x2

x2

+ x3 = 0
= 0

 
30.

 
x1 + x2

x2

+ x3 = 0
= 0

Graphical Analysis In Exercises 31–36, complete parts 
(a)–(e) for the system of equations.

(a) Use a graphing utility to graph the system.
(b)  Use the graph to determine whether the system is  

consistent or inconsistent.
(c)  If the system is consistent, approximate the solution.
(d) Solve the system algebraically.
(e)  Compare the solution in part (d) with the  

approximation in part (c). What can you conclude?

31.
 

−3x −
6x +

y = 3
2y = 1

 
32.

 
4x −

−8x +
5y =

10y =
3

14

33.
 
2x −
1
2x +

8y = 3
y = 0

 
34.

 
9x −
1
2x +

4y = 5
1
3y = 0

35.
 

4x −
0.8x −

8y =
1.6y =

9
1.8

 
36.

 
−14.7x +

44.1x −
2.1y =
6.3y =

1.05
−3.15

System of Linear Equations In Exercises 37–56, solve 
the system of linear equations.
37.

 
x1 −

3x1 −
x2 =

2x2 =
0

−1
 

38.
 
3x + 2y =
6x + 4y =

2
14

39.
 
3u +
u +

v = 240
3v = 240

 
40.

 
x1 − 2x2 = 0

6x1 + 2x2 = 0

41.
 
9x − 3y = −1

1
5x + 2

5y = −1
3
 

42.
 

2
3x1 +
4x1 +

1
6x2 = 0
x2 = 0

43.
 

x − 2
4

+ y − 1
3

=

x − 3y =

2

20

44.
 

x1 + 4
3

+ x2 + 1
2

=

3x1 − x2 =

1

−2

45.
 
0.02x1 − 0.05x2 =
0.03x1 + 0.04x2 =

−0.19
0.52

46.
 
0.05x1 − 0.03x2 = 0.21
0.07x1 + 0.02x2 = 0.17

47.
 

x
x

2x

−
+

y
2y

− z = 0
− z = 6
− z = 5

48.
 

x +
−x +
4x +

y
3y
y

+
+

z = 2
2z = 8

= 4

49.
 
3x1 −
x1 +

2x1 −

2x2 +
x2 −

3x2 +

4x3 = 1
2x3 = 3
6x3 = 8

The symbol     indicates an exercise in which you are instructed to use a  
graphing utility or software program.
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 1.1 Exercises 11

50.
 
5x1 −
2x1 +
x1 −

3x2 +
4x2 −

11x2 +

2x3 = 3
x3 = 7

4x3 = 3

51.
 

2x1

4x1

−2x1

+

+

x2 −
+

3x2 −

3x3 =
2x3 =

13x3 =

4
10

−8

52.
 

x1

4x1

2x1

− 2x2

− 2x2

+
+
−

4x3 =
x3 =

7x3 =

13
7

−19

53.
 

x −
5x −

3y +
15y +

2z = 18
10z = 18

54.
 

x1 − 2x2 +
3x1 + 2x2 −

5x3 =
x3 =

2
−2

55.

 

x +
2x +

−3x +
x +

y
3y
4y
2y

+ z

+ z
− z

+
−
+
+

w = 6
w = 0

2w = 4
w = 0

56.

 

−x1

3x1 −

4x2

x2

2x2

−

+

x3

3x3

+
−
−

2x4 = 1
x4 = 2
x4 = 0

= 4

System of Linear Equations In Exercises 57–62, use  
a software program or a graphing utility to solve the  
system of linear equations.
57.

 
123.5x + 61.3y − 32.4z =
54.7x − 45.6y + 98.2z =
42.4x − 89.3y + 12.9z =

−262.74
197.4  
33.66

58.
 
120.2x + 62.4y − 36.5z =
56.8x − 42.8y + 27.3z =
88.1x + 72.5y − 28.5z =

258.64
−71.44
225.88

59.

 

x1 +
0.5x1 +

0.33x1 +
0.25x1 +

0.5x2 +
0.33x2 +
0.25x2 +
0.2x2 +

0.33x3 +
0.25x3 +
0.2x3 +

0.17x3 +

0.25x4 = 1.1
0.21x4 = 1.2
0.17x4 = 1.3
0.14x4 = 1.4

60.

 

0.1x − 2.5y + 1.2z −
2.4x + 1.5y − 1.8z +
0.4x − 3.2y + 1.6z −
1.6x + 1.2y − 3.2z +

0.75w =
0.25w =
1.4w =
0.6w =

108
−81
148

−143
.8
.2

61.
 

1
2x1 − 3

7x2 + 2
9x3 =

2
3x1 + 4

9x2 − 2
5x3 =

4
5x1 − 1

8x2 + 4
3x3 =

349
630

−19
45

139
150

62. 1
8x − 1

7y + 1
6z − 1

5w = 1

 1
7x + 1

6y − 1
5z + 1

4w = 1

 1
6x − 1

5y + 1
4z − 1

3w = 1

 1
5x + 1

4y − 1
3z + 1

2w = 1

Number of Solutions In Exercises 63–66, state why 
the system of equations must have at least one solution. 
Then solve the system and determine whether it has 
exactly one solution or infinitely many solutions.
63.

 
4x + 3y + 17z = 0
5x + 4y + 22z = 0
4x + 2y + 19z = 0

 
64.

 
2x + 3y
4x + 3y
8x + 3y

−
+

= 0
z = 0

3z = 0

65.
 

5x +
10x +
5x +

5y −
5y +

15y −

z = 0
2z = 0
9z = 0

 
66. 16x + 3y + z = 0

16x + 2y − z = 0

67.  Nutrition One eight-ounce glass of apple juice and 
one eight-ounce glass of orange juice contain a total of 
227 milligrams of vitamin C. Two eight-ounce glasses 
of apple juice and three eight-ounce glasses of orange 
juice contain a total of 578 milligrams of vitamin C. 
How much vitamin C is in an eight-ounce glass of each 
type of juice?

68.  Airplane Speed Two planes start from Los Angeles 
International Airport and fly in opposite directions. The 
second plane starts 1

2 hour after the first plane, but its 
speed is 80 kilometers per hour faster. Two hours after 
the first plane departs, the planes are 3200 kilometers 
apart. Find the airspeed of each plane.

True or False? In Exercises 69 and 70, determine 
whether each statement is true or false. If a statement 
is true, give a reason or cite an appropriate statement 
from the text. If a statement is false, provide an example 
that shows the statement is not true in all cases or cite an 
appropriate statement from the text.
69. (a)  A system of one linear equation in two variables is 

always consistent.

 (b)  A system of two linear equations in three variables 
is always consistent.

 (c)  If a linear system is consistent, then it has infinitely  
many solutions.

70. (a) A linear system can have exactly two solutions.

 (b)  Two systems of linear equations are equivalent 
when they have the same solution set.

 (c)  A system of three linear equations in two variables 
is always inconsistent.

71.  Find a system of two equations in two variables, x1 and 
x2, that has the solution set given by the parametric  
representation x1 = t and x2 = 3t − 4, where t is any 
real number. Then show that the solutions to the system 
can also be written as

x1 = 4
3

+ t
3

  and  x2 = t.

The symbol  indicates that electronic data sets for these exercises are available  
at LarsonLinearAlgebra.com. The data sets are compatible with MATLAB,  
Mathematica, Maple, TI-83 Plus, TI-84 Plus, TI-89, and Voyage 200.
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12 Chapter 1 Systems of Linear Equations

72.  Find a system of two equations in three variables,  
x1, x2, and x3, that has the solution set given by the  
parametric representation

x1 = t,  x2 = s,  and  x3 = 3 + s − t

  where s and t are any real numbers. Then show that the  
solutions to the system can also be written as

x1 = 3 + s − t,  x2 = s,  and  x3 = t.

Substitution In Exercises 73–76, solve the system 
of equations by first letting A = 1͞x, B = 1͞y, and 
C = 1͞z.

73.
 

12
x

− 12
y

= 7

3
x

+ 4
y

= 0
 

74.
 

3
x

+ 2
y

=

2
x

− 3
y

=

−1

−17
6

75.

 

2
x
4
x

−2
x

+ 1
y

+ 3
y

− 3
z

=

+ 2
z

=

− 13
z

=

4

10

−8

 

76.

 

2
x

+ 1
y

3
x

− 4
y

2
x

+ 1
y

− 2
z

=

=

+ 3
z

=

5

−1

0

Trigonometric Coefficients In Exercises 77 and 78, 
solve the system of linear equations for x and y.
77.  (cos θ)x + (sin θ)y = 1
  (−sin θ)x + (cos θ)y = 0

78.  (cos θ)x + (sin θ)y = 1
  (−sin θ)x + (cos θ)y = 1

Coefficient Design In Exercises 79–84, determine the 
value(s) of k such that the sys tem of linear equations has 
the indicated number of solutions.
79. No solution 80. Exactly one solution

 
x +

kx +
ky = 2
y = 4

  
x +

kx +
ky = 0
y = 0

81. Exactly one solution 82. No solution

 
kx +
x +

2x −

2ky +
y +
y +

3kz =
z =
z =

4k
0
1

  
x + 2y + kz = 6

3x + 6y + 8z = 4

83. Infinitely many solutions

 
4x +
kx +

ky =
y =

6
−3

84. Infinitely many solutions

 
kx +
3x −

y =
4y =

16
−64

85.  Determine the values of k such that the system of linear  
equations does not have a unique solution.

 
x +
x +

kx +

y +
ky +
y +

kz = 3
z = 2
z = 1

86.  CAPSTONE Find values of a, b, and c such 
that the system of linear equations has (a) exactly 
one solution, (b) infinitely many solutions, and  
(c) no solution. Explain.

 
x + 5y +
x + 6y −

2x + ay +

z = 0
z = 0

bz = c

87.  Writing Consider the system of linear equations in x 
and y.

 a1x + b1y = c1
 a2x + b2y = c2
 a3x + b3y = c3

  Describe the graphs of these three equations in the  
xy-plane when the system has (a) exactly one solution,  
(b) infinitely many solutions, and (c) no solution.

88.  Writing Explain why the system of linear equations 
in Exercise 87 must be consistent when the constant 
terms c1, c2, and c3 are all zero.

89.  Show that if ax2 + bx + c = 0 for all x, then 
a = b = c = 0.

90. Consider the system of linear equations in x and y.

 
ax +
cx +

by =
dy =

e
f

  Under what conditions will the system have exactly one 
solution?

Discovery In Exercises 91 and 92, sketch the lines  
represented by the system of equations. Then use 
Gaussian elimination to solve the system. At each step of 
the elimination process, sketch the corresponding lines. 
What do you observe about the lines?

91.
 

x − 4y =
5x − 6y =

−3
13

 
92.

 
2x −

−4x +
3y =
6y =

7
−14

Writing In Exercises 93 and 94, the graphs of the 
two equations appear to be parallel. Solve the system 
of equations algebraically. Explain why the graphs are  
misleading.

93.
 
100y − x =
99y − x =

200
−198

 
94.

 
21x − 20y =
13x − 12y =

0
120

 

−1−3 1 2 3 4

−3
−4

1

3
4

y

x

  

−10 10 20

10

20

y

x
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